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Abstract: Use of underwater passive acoustic datasets for species-specific inference requires robust classification systems to
identify encounters to species from characteristics of detected sounds. A suite of routines designed to efficiently detect ceta-
cean sounds, extract features, and classify the detection to species is described using ship-based, visually verified detections of
false killer whales (Pseudorca crassidens). The best-performing model included features from clicks, whistles, and burst pulses,
which correctly classified 99.6% of events. This case study illustrates use of these tools to build classifiers for any group of ceta-
cean species and assess classification confidence when visual confirmation is not available.
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1. Introduction

Use of passive acoustic datasets to assess various elements of cetacean occurrence, population structure, and abundance is
increasing (Baumann-Pickering et al., 2014; Baumann-Pickering et al., 2015; Barlow et al., 2021; Barlow and Taylor, 2005).
Although the sounds of some species are well characterized, recognizable by trained researchers, or unique enough for
simple detection/classification routines (Backus and Schevill, 1966; Baumann-Pickering et al., 2013; Zimmer et al., 2005),
the assignment of species identity to a detected vocal group is not a trivial task for many species. Ship-based surveys with
concurrent visual and acoustic efforts provide acoustic detection datasets with visual species confirmation (Hill et al., 2020;
Rankin et al., 2008; Yano et al., 2018), allowing for examination of cetacean sound characteristics (Keating et al., 2016;
Rankin et al., 2017) that can be used to classify acoustic detections without accompanying visual identity (Keating et al.,
2018).

A 2017 joint visual and acoustic ship-based survey of Hawaiian waters [Hawaiian Islands Cetacean and
Ecosystem Assessment Survey (HICEAS)] (Yano et al., 2018) provides a dataset with which classification tools can be
developed and performance tested. This dataset, collected with two simultaneously surveying ships across the entire
Hawaiian Exclusive Economic Zone (EEZ) throughout the summer and fall, contains 766 acoustic detections of 23 ceta-
cean species with vocal groups verified by a team of experienced visual observers. The survey provides a large species-
confirmed dataset with ample data to evaluate classifier performance for multiple species.

In waters surrounding the Hawaiian Islands, there are three distinct populations of false killer whales [Pseudorca
crassidens (PC)] known as the Northwestern Hawaiian Islands insular, Main Hawaiian Islands (MHI) insular, and pelagic
populations (Baird et al., 2008; Baird et al., 2010; Baird et al., 2013; Chivers et al., 2007). The resident MHI insular popu-
lation is listed as endangered under the United States Endangered Species Act1 due to its small population size and large
decline over several decades in the late 1990s (Oleson et al., 2010). Furthermore, the pelagic population is taken as bycatch
in the Hawaii-based tuna longline fishery (Forney et al., 2011). The management concerns surrounding these stocks have
made them a focus of many Hawaii survey efforts due to the need for robust occurrence and abundance data when exam-
ining population status and potential management measures (Bradford et al., 2017; Bradford et al., 2018; Bradford et al.,
2021). Abundance estimates for these populations are available from visual-based sighting surveys, and to date there have
not been adequate classifiers that can provide a species-level classification score for each encounter, independent of the
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type of calls detected, that would allow for quantitative evaluation of acoustic detections that do not have visual species
confirmation (Barlow and Rankin, 2007; Bradford et al., 2021).

Highly vocal false killer whales produce echolocation clicks, whistles, and burst pulses (Oswald et al., 2007;
Oswald et al., 2008; Rankin et al., 2008). This behavior has allowed researchers to identify the possible vocal activity of
false killer whales in towed hydrophone array recordings before the initial visual sighting of the species during ship-based
surveys (Yano et al., 2018). Classification models with high correct classification rates (>80%) have been developed to
identify false killer whales through whistles (Oswald et al., 2007) and echolocation clicks (Baumann-Pickering et al., 2015)
separately, but these models do not incorporate their entire vocal repertoire. Accurate and automated classification of false
killer whales would provide the opportunity to incorporate acoustic detections from ship-based surveys into abundance
assessments and provide an efficient means for examining other autonomous passive acoustic datasets for false killer whale
occurrence.

A compound classification model known as “bio-acoustic event classifier” (BANTER) has been developed using
the entire repertoire of detected sounds, including echolocation clicks, whistles, and burst pulses (Rankin et al., 2017). The
BANTER model developed by Rankin et al. (2017) achieved an overall correct classification score of 84% across five dol-
phin species in the California Current and was able to distinguish short and long-beaked common dolphins (Delphinus
capensis and Delphinus delphis, respectively). In previous classification efforts, the two species of common dolphins could
not be differentiated (Oswald et al., 2007), and including call characteristics from three different sound types allowed for a
more accurate discrimination between species. BANTER models evaluate characteristics of acoustic detections from known
species both individually and collectively (in events) to build a model that can be applied to novel data for classification of
species (Rankin et al., 2017). Additionally, it provides classification confidence scores for defined species or groups based
on the available testing and training dataset. Together with a new data extraction and aggregation tool (PAMpal; Sakai,
2020), we demonstrate the workflow and ultimate performance of the BANTER classifier for false killer whales in the
Hawaiian Islands. This case study can be modified for use toward any other single or multi-species detection and classifi-
cation problem.

2. Methods

The methods framework breaks down into three sections: process recordings, extract features, and build classifier (Fig. 1).
Each section break represents a modular joint where researchers can package data for various analyses.

2.1 Process recordings

All acoustic recordings were collected as part of HICEAS in 2017 (Yano et al., 2018). This large-scale survey for cetaceans
and seabirds took place in July–December using two research vessels, which systematically surveyed the Hawaiian EEZ.
On both vessels, the towed hydrophone array components and data acquisition systems were designed to be as similar as
possible to produce comparable data. Acoustic recordings were collected from multi-channel towed hydrophone arrays
using a 500 kHz sampling rate and a high pass filter at 1.6 kHz to reduce ship and flow noise. The visual and passive
acoustic observers worked independently in the field; the passive acoustics observers received information on visual sight-
ings in near real-time; however, passive acoustic detection information was not shared with the visual observers until the
group had passed beyond the beam of the array. More details on the HICEAS survey, including data collection methods,
the technical specifications of the towed array, and a summary of all acoustic and visual observations from the survey, are
available from Yano et al. (2018).2

Automated detectors within the PAMGuard software (version 2.00.16e; Gillespie et al., 2009) were used to iden-
tify echolocation clicks, whistles, and burst pulses. To increase the speed and resolution of data processing, the data were
decimated to 250 kHz for click detection and 75 kHz for whistle and burst pulse detection. Echolocation clicks were
detected using the Click Detector module, which incorporated a fourth order IIR Butterworth high-pass filter with a 4 kHz
corner frequency to reduce false triggering on low-frequency sounds. A 14 dB signal-to-noise ratio (SNR) threshold was
required for all click detections. A suite of PAMGuard click classifiers (Keating and Barlow, 2013) was used to categori-
cally label click detections based on the presence of energy in various frequency bands. Within BANTER, these labeled
detections were treated as distinct click detectors, which allow the model to distinguish contributions from each detector
to different classes or species. Whistles were detected from spectrograms (1024 point FFT Hanning window) using the
PAMGuard Whistle and Moan Detector module. Whistle contours were saved if they were between 2 and 28 kHz and had
a minimum duration of 546ms. Burst pulses were detected through a multi-step process utilizing the same spectrogram
used in whistle detection, as well as the PAMGuard Cepstrum module. In signal processing, the cepstrum is used to iden-
tify periodic structures within the spectrum (Bogert et al., 1963). In our case, the cepstrum captures the harmonic nature
of burst pulses in a spectrogram, and the y axis of the cepstrum can be interpreted as the inter-click interval (ICI) of burst
pulses. To detect burst pulses, the Whistle and Moan Detector module identified cepstral contours with a minimum dura-
tion of 68ms between 2 and 37 kHz. A frequency range of 2–37 kHz in the cepstral space corresponds to an ICI between
0.36 and 6.7ms or equivalently harmonics separated by 150–2750Hz. Detections of echolocation clicks, whistles, and burst
pulses were then grouped into acoustic events.
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All acoustic events were labeled with a species code based on concurrent visual observations, with the exception
of beaked whale (Ziphiidae) and sperm whale (Physeter macrocephalus) events, which were labeled based on the species-
specific spectral and temporal characteristics of detected clicks (Backus and Schevill, 1966; Baumann-Pickering et al., 2013;
Zimmer et al., 2005). Any acoustic events that were not classified to the species level (e.g., “Unidentified small delphinid”)
were not included in the model training dataset. All mixed-species events and overlapping events (those visually or acous-
tically localized within 3 nmi of another event) were also omitted. The start and end times of acoustic events were initially
defined by analysts in the field based on localization and verified in post-processing. The start and end times are the
respective first and last call times detected by the PAMGuard detectors or through aural monitoring.

2.2 Extract features

A suite of spectral and temporal features was calculated from a single channel for all click, whistle, and burst pulse detec-
tions using the open-source PAMpal package within the R software (R Core Team, 2020; Sakai, 2020). The full list of fea-
tures calculated by PAMpal is available in the R package documentation3; these features were chosen based on those that
have proven important in previous species classification efforts using echolocation clicks (Baumann-Pickering etal., 2010;
Griffiths et al., 2020) and whistles (Oswald et al., 2007). For echolocation clicks, a high pass filter at 1.6 kHz was applied
before extracting features using a window length of 250ms. Click detections were omitted if they contained peak frequen-
cies outside of the expected range for each detector (e.g., 2–15, 15–30, 30–50, and 50–80 kHz). Because acoustic events
were defined by start and end time encompassing all click detections in that time window, we evaluated model perfor-
mance with additional noise-removal steps. Click detections with peak frequencies below 5 kHz or greater than 80 kHz,
10 dB bandwidth less than 5 kHz, and durations less than 2 ls or greater than 1000 ls contained temporal and spectral

Fig. 1. Development flow chart for species classification model.
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properties that suggested they were noise (including echosounder pulses used throughout the survey); therefore, these sig-
nals were discarded using a custom script in R.

2.3 Build classifier

We used the two-step, random forest BANTER modeling framework described by Rankin et al., (2017) and available in
the R package “banter,” in which call classifiers (step 1) are used to develop an event-level classifier (step 2). Defining the
“best model” is an iterative process. Multiple detector types were considered in the model development, including the
whistle, burst pulse, and five click detectors described earlier. Because BANTER uses generalized detectors with the intent
of capturing a broad diversity of those signals that are present, any given detector included in the model development was
required to contain detections from at least two species for functionality. We varied the number of trees and sample size
of calls or events used to train the respective call (step 1) and event classifiers (step 2) to both minimize and stabilize error
within the model.

Because random forest algorithms sample the data and randomize the variables, they are in principle robust to
overfitting (Hastie et al., 2009) and do not require separate training and testing datasets. Variable importance and model
performance were visualized using the rfPermute package (Archer, 2020). We evaluated models trained on multiple poten-
tial species labels (e.g., false killer whales, sperm whales, rough-toothed dolphins) as well as a two-case scenario where all
species besides false killer whales “PC” were considered under an aggregated label “OTHER.” OTHER species consist of
spotted dolphin (Stenella attenuata), striped dolphin (Stenella coeruleoalba), rough-toothed dolphin (Steno bredanensis),
Risso’s dolphin (Grampus griseus), Fraser’s dolphin (Lagenodelphis hosei), melon-headed whale (Peponocephala electra),
pygmy killer whale (Feresa attenuata), short-finned pilot whale (Globicephala macrorhynchus), and sperm whale (Physeter
macrocephalus). The model provides a classification score for each candidate species within each acoustic event, with each
species score ranging from 0 to 1. The species (or grouping, in the case of the PC versus OTHER model) with the greatest
score is the assigned species for each event.

3. Results

Approximately 2400 h of recordings were collected during HICEAS 2017, including 766 acoustic events of cetaceans. After
removing baleen whales, unidentified dolphins, mixed-species, and overlapping acoustic events, 230 cetacean acoustic
encounters from 10 species were used to build BANTER models. A preliminary review of beaked whale acoustic encoun-
ters indicated that our noise removal steps were not sufficient to eliminate false noise detections within beaked whale
events such that false detections dominated these encounters. Therefore, all beaked whale events were excluded from the
models. For all species included in the models, the event duration and the number of echolocation click, whistle, and burst
pulse detections are described in Table 1.

For the final models, the first step of random forest BANTER modeling consisted of 2000 trees and 15 individual
calls per species for each detector. These values result in 105 calls per tree in the multi-species model and 30 calls per tree
in the two-case model. The second step for event classification of the multi-species model used 30 000 trees and 8 events
per species to build each tree, whereas the two-case was built with 10 000 trees and 15 events per species to build each

Table 1. Acoustic detection data used to build classification models. Detection counts are represented as an average number of each signal
type detected per event 6 standard deviation, with the total number of that signal type noted in parentheses.

Species Events Detection counts

Scientific name Common name Count Duration (min) Clicks Whistles Burst pulses Total

Stenella attenuata Spotted dolphin 16 366 22 (570) 48886 8032 (78 207) 1356 181 (2027) 786 204 (1014) 81 248
Stenella coeruleoalba Striped dolphin 19 1176 326 (2220) 2736 734 (5182) 1066 156 (2007) 216 57 (278) 7467
Steno bredanensis Rough-toothed

dolphin
12 376 32 (449) 81196 10 552 (97 432) 1136 115 (1020) 936 186 (1023) 99 475

Grampus griseus Risso’s dolphin 9 406 36 (361) 57636 5524 (51 868) 526 29 (259) 2056 193 (1643) 53 770
Lagenodelphis hosei Fraser’s dolphin 2 626 14 (124) 2046 54 (408) 4726 234 (945) 166 8 (32) 1385
Peponocephala electra Melon-headed

whale
2 516 22 (103) 74766 1621 (14 952) 4226 1 (843) 10796 482 (2158) 17 953

Feresa attenuata Pygmy killer whale 3 186 8 (55) 12756 1376 (3824) 26 1 (5) 286 43 (83) 3912
Pseudorca crassidens False killer whale 20 1506 101 (3004) 17 8796 29 252 (357 574) 26516 2359 (53 011) 1226 146 (2436) 413 021
Globicephala
macrorhynchus

Short-finned
pilot whale

20 626 46 (1248) 45796 5849 (91 577) 2596 308 (4914) 5066 687 (8602) 105 093

Physeter
macrocephalus

Sperm whale 127 466 49 (5793) 16976 6357 (201 925) 276 28 (557) 76 15 (658) 203 140
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tree. This results in 56 events per tree for the multi-species model and 30 events per tree in two-case model. All remaining
events in step 2 for both models were assigned to an out-of-bag (OOB).

The multi-species BANTER model produced a 100% correct classification rate for false PC, but only an 82.96%
overall correct classification across all species (Table 2). Even though all the PC events were correctly classified, four events
from other species were misclassified as PC within close proximity of the main cluster [Fig. 2(A)]. Model output was stable
when the number of trees versus error no longer varied for more than 2500 trees, reached at the 20 000 mark [Fig. 2(B)].
In addition, the multi-species model dropped three species (Fraser’s dolphin, melon-headed whale, pygmy killer whale)
due to their low event count based on the selected value of events per species. If the value of events per species had been
one, the multi-species model would have produced an overall correct classification of 59.13%, and those species could have
been included. The best performing BANTER model that included all ten species was the two-case model producing a

Table 2. Confusion matrix for the multi-species model. Classification scores are shown as percent correct with 95% confidence interval in
parentheses. Prior percentage represents the chance of correct classification based solely on the total number of events possible (Archer et al.,
2017). Species code is based on the first letter of the genus and species shown in Table 1. NA, not applicable.

SC SB SA GG PC GM PM Correct (%) Prior (%)

SC 17 0 2 0 0 0 0 89.47 (66.68, 98.70) 8.52
SB 0 7 1 1 0 1 2 58.33 (27.67, 84.83) 5.38
SA 3 1 10 1 1 0 0 62.50 (35.43, 84.80) 7.17
GG 0 0 1 7 0 0 1 77.78 (39.99, 97.19) 4.04
PC 0 0 0 0 20 0 0 100.00 (83.16, 100.00) 8.97
GM 2 1 0 1 1 14 1 70.00 (45.72, 88.11) 8.97
PM 7 1 2 3 2 2 110 86.61 (79.44, 92.00) 56.95
Overall NA NA NA NA NA NA NA 82.96 (77.37, 87.65) 35.74

Fig. 2. Proximity plots [(A), (C)] and random forest event classification error rates versus the number of trees [(B), (D)] applied in the classifi-
cation model. Dots on the proximity plot represent acoustic events color-coded by the true species surrounded by a ring indicating species
classification from model. Error rates for species classification are represented as dashed lines and OOB as solid black. Output from the multi-
species model [(A), (B)] is shown versus single-species focused model [(C), (D)].
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99.57% overall correct classification (Table 3). Model output was stable when the number of trees reached the 7500 mark
[Fig. 2(D)]. All OTHER events classified correctly, and the one misclassified PC event was in close proximity to a cluster
of OTHER events [Fig. 2(C)].

4. Discussion

The two-case BANTER model (PC versus OTHER) was able to correctly predict species labels for 99% of all cases, provid-
ing a robust classifier for false killer whale acoustic events. Though the multi-species model only reached 83% correct clas-
sification, it showed that the cluster of false killer whale events was highly distinguishable from the other species [Fig.
2(A)]. The strength of these classification models is likely based on the expansiveness of the dataset. Acoustic data collec-
tion spanned numerous months, two vessels with varying noise profiles, and over large geographic areas. These training
data captured a variety of social groups and behavioral contexts within acoustic events from each species.

The two-case classification model has several applied strengths with some limitations. Some uses of passive
acoustic datasets toward addressing current conservation and management issues for false killer whales require only reli-
able identification of false killer whale acoustic events, with little need for understanding the presence of other species
detected within the dataset. Improving classifier performance for false killer whales by aggregating detections of all others
in a single category is beneficial in this use-case. A similar approach (one versus the rest) could be applied to other species
or ensembles of species, though doing so clearly precludes the ability to identify other priority species, at least within the
same classifier set. Further, this approach may not be as successful for less vocal species or species with fewer distinct
species-specific features.

The ten species of odontocetes in the two-case classification model represent the majority of odontocetes species
present in the Hawaii region. Other known species in the region are killer whale (Orcinus orca), spinner dolphin (Stenella
longirostris), bottlenose dolphin (Tursiops truncatus), ginkgo-toothed beaked whale (Mesoplodon ginkgodens), dwarf sperm
whale (Kogia sima), and pygmy sperm whale (Kogia breviceps), but they were not acoustically detected during HICEAS
and, therefore, were not included in this initial model. As additional data become available, species can be added to the
model for future analyses. Future studies may also consider additional data from other seasons or other geographic regions
to evaluate whether such variation impacts classifier performance.

Until now, there were no tools to classify acoustic detections of false killer whales automatically using their entire
vocal repertoire. Manual evaluation of acoustic characteristics has been the primary method for analyses (Bayless et al.,
2017; Thode et al., 2016). Depending on the specific questions to be addressed, either the multi-species or the two-case
BANTER model will provide automatic classification and metrics for evaluating the classification confidence of false killer
whale detections with no visual confirmation. All of the detection, feature extraction, and classification tools are open-
source, and the methods we demonstrate here can easily be applied to other regions, taxa, and call types.
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